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1. Abstract  
choice of approximate posterior distribution  in VI :

had been simple families

( ex. mean-filed or other simple structured approximations )

these restrictions  not good performance

 

Introduce a new approach, "Normalizing Flow"

flexible, complex, and scalable

 

2. Introduction  
limitations of variational methods :  choice of posterior approximation are often limited

 thus, richer approximation is needed

af://n0
af://n2
af://n3
af://n5
af://n40
af://n54


 

Methods for richer approximation

ex1) structured mean field approximations that incorporate basic form of dependency within 
the approximate posterior
ex2) mixture model ( limit : potential scalability... have to compute each for the mixture 
component )

 

We will

1) review the current est practice ( based on "amortized VI ")

2) make following contributions

a) propose a method using normalizing flow (NF)
b) show that NF admit infinitesimal flows

 

3. Amortized Variational Inference  
current best practice in VI uses...

1) mini-batches
2) stochastic gradient descent (SGD)

 to deal with very large dataset

 

for successful variational approach, we need to...

1) efficient computation of the derivatives of the expected log-likelihood, 

  solution 1) MC estimation 

  solution 2) inference networks 

 ( solution 1+2 = "amortized VI")

2) choosing the richest, computationally-feasible approximate posterior distribution, 

  solution ) Normalizing Flow!

 

3.1 Stochastic Backpropagation  
compute  ( expected log likelihood) ... with MC estimation!

also called "doubly-stochastic estimation".. why double?

1) stochasticity from the mini-batch
2) stochasticity from the MC approximation of the expectation

 

"continuous latent variables" + "MC approximation" 

= Stochastic Gradient Variational Bayes (SGVB)
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SGVB involves 2 steps

1) Reparameterization

2) Backprop with MC

 

3.2 Inference Networks  
Inference Network

def) model that learns an INVERSE MAP from observation( ) to latent variables( ) 

 is represented using Inference Networks!

why Inference Network?

we avoid the need to compute per data point variational parameters, but can instead 
compute 
a set of global variational parameters  valid for inference at both training and test 
time.

simplest Inference Network : "DIAGONAL GAUSSIAN densities"

 

3.3 Deep Latent Gaussian Models ( DLGM )  
hierarchy of  layers of Gaussian latent variables  for layer 

prior over latent variables : 
observation likelihood :  by NN

 

DLGMs

use continuous latent variable 
model class perfectly suited to fast amortized VI ( using ELBO & stochastic back-prop )
end-to-end system of DLGM  encoder-decoder architecture

 

4. Normalizing Flows (NF)  
optimal variational distribution

( =   )

 should be highly flexible
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NF descrribes the transformation of probability density through "A SEQUENCE OF INVERTIBLE 
MAPPINGS"

 

4.1 Finite Flows  
setting

 , where 

 

variable transformation

-

 

successive application

 

expectation

does not depend on 

 

summary

use simple factorized  distribution ( ex. independent Gaussian )
apply NF of different lengths to get increasingly complex distribution

 

5. Inference with NFs  
we must ...

1) specify a class of invertible transformations
2) efficient mechansim for computing the determinant of Jacobian

 

Therefore we require NF that allow for low-cost computation of the determinant, or where 
Jacobian is not needed!

 

5.1 Invertible Linear-time Transformations  
linear time transformation
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= we can compute the log det-Jacobian term in  time 

 

5.1.1 Planar Flows  

form : 

 : smooth element-wise non-line with derivative 

( where  )

 

before ) 

after )  

 

5.1.2 Radial Flows  

form : 

 

under certain conditions...

5.1.1) Planar flows and 5.1.2) Radial Flows can be invertible!

 

5.2 Flow-Based Free Energy Bound  
approximate our posterior distribution, with a flow of length 

 

do not need , only need 

 

5.3 Algorithm Summary  
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