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1. Abstract

choice of approximate posterior distribution g in VI :

e had been simple families
( ex. mean-filed or other simple structured approximations )

e these restrictions — not good performance

Introduce a new approach, "Normalizing Flow"

e flexible, complex, and scalable

2. Introduction

limitations of variational methods : choice of posterior approximation are often limited

— thus, richer approximation is needed
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Methods for richer approximation

e ex1) structured mean field approximations that incorporate basic form of dependency within
the approximate posterior

e ex2) mixture model ( limit : potential scalability... have to compute each for the mixture
component)

We will

e 1) review the current est practice ( based on "amortized VI )
e 2) make following contributions

o a) propose a method using normalizing flow (NF)
o b)show that NF admit infinitesimal flows

3. Amortized Variational Inference

current best practice in VI uses...

e 1) mini-batches
e 2)stochastic gradient descent (SGD)

— to deal with very large dataset

for successful variational approach, we need to...

e 1) efficient computation of the derivatives of the expected log-likelihood,
V¢,Eq¢(z) [log po(x | z)]
— solution 1) MC estimation
— solution 2) inference networks
( solution 1+2 ="amortized VI")
¢ 2) choosing the richest, computationally-feasible approximate posterior distribution, g(-)

— solution ) Normalizing Flow!

3.1 Stochastic Backpropagation

compute VI, () [log ps(x | 2)] (expected log likelihood) ... with MC estimation!
also called "doubly-stochastic estimation".. why double?

e 1) stochasticity from the mini-batch
e 2)stochasticity from the MC approximation of the expectation

"continuous latent variables" + "MC approximation"

= Stochastic Gradient Variational Bayes (SGVB)
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SGVB involves 2 steps
e 1) Reparameterization
z~N(z|po?) & z=p+oe, e~N(0,1)
e 2)Backprop with MC
V4B, o) [fo(2)] < Eneoy [V fo(p + oe)]

3.2 Inference Networks

Inference Network
o def) model that learns an INVERSE MAP from observation(z) to latent variables(z)
* g,(-) is represented using Inference Networks!
e why Inference Network?

o we avoid the need to compute per data point variational parameters, but can instead
compute
a set of global variational parameters ¢ valid for inference at both training and test
time.
e simplest Inference Network : "DIAGONAL GAUSSIAN densities"

gp(z | x) =N (z | ud)(x),diag(a’i(x)))

3.3 Deep Latent Gaussian Models ( DLGM )
hierarchy of L layers of Gaussian latent variables z; for layer

p(%,21,..,2) =p (x| fo (21)) [Ty p (21 | fi (2:1))

e prior over latent variables : p (z;) = N(0,I)
e observation likelihood : pg(x | z) by NN

DLGMs

e use continuous latent variable
e model class perfectly suited to fast amortized VI ( using ELBO & stochastic back-prop)
e end-to-end system of DLGM = encoder-decoder architecture

4. Normalizing Flows (NF)

optimal variational distribution

* Dkilqlp] =0
(=g4(z [ x) = po(z | x) )
* g4(z | x) should be highly flexible
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NF descrribes the transformation of probability density through "A SEQUENCE OF INVERTIBLE
MAPPINGS"

4.1 Finite Flows

setting

e f:R¥ 5 R? wherefl=yg
* gof(z) =z
. 7 = f(2)

variable transformation

91 of |1
0() = a(2) |det 5| = a(z)[det 5

successive application

zZg = fk 0...0 fyo fi(z)

Ofy
0z, 1

Ingx (zx) = Ingo (20) — Yopy ln.det

expectation
Eq, [1(2)] = Eq, [h (fx © fx-10-..0 fi (20))]

e does not depend on g;

summary

e use simple factorized distribution ( ex. independent Gaussian)
e apply NF of different lengths to get increasingly complex distribution

5. Inference with NFs

we must ...

e 1) specify a class of invertible transformations
e 2) efficient mechansim for computing the determinant of Jacobian

Therefore we require NF that allow for low-cost computation of the determinant, or where
Jacobian is not needed!

5.1 Invertible Linear-time Transformations

linear time transformation
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= we can compute the log det-Jacobian term in O(D) time

5.1.1 Planar Flows
form: f(z) =z + uh (w'z +b)
e A={weR’, uecR” beR}
e h(-):smooth element-wise non-line with derivative A’ (-)

det g—é’ = |det(I+uy(z)")| =1+ u’y(z)|

(where ¥(z) = h' (W'z+b)w)

zg = fk o...0 f20 fi (z0)

Ofy,
0z 1

e before)Ingk (zx) =Ingy (2z0) — Zszl ln’det

o after) Ingx (zx) = Ing(z) — S0, In|1 + u} ¥ (zx-1)|

5.1.2 Radial Flows

form: f(z) =z + Bh(a,r) (z — 20)

ot 2| = [1+ Bh(a, NI 1+ Bh(a,) + BH (0, )r)]

under certain conditions...

5.1.1) Planar flows and 5.1.2) Radial Flows can be invertible!

5.2 Flow-Based Free Energy Bound

approximate our posterior distribution, with a flow of length K

94(2 | x) := gk (2K)

F(x) = Eq, (312) [log gy (z | x) — logp(x, z)]
= ]EQU(ZU) [111 QK (ZK) - logp (X-7 ZK)]

K
= By () 1000 (20)] — Bgyzy) 08P (%, 28)] = Egyz) | D_In | 1+ ug g (z11)
k=1

¢ do not need g;(-), only need ¢y ()

5.3 Algorithm Summary
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Algorithm 1 Variational Inf. with Normalizing Flows

Parameters: ¢ variational, 8 generative
while not converged do
x + {Get mini-batch}
zo ~ qo(e|x)
Zx + ko fk—10...0 f1(2o)
F(x) =~ F(x,2x)
AB x =V F(x)
AQE& x —Vql).;r(}{}
end while
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